Muammar Sadrawi, B.S., M.S., Ph.D.

Faculty of Bioinformatics

Research Interest

Dr. Muammar Sadrawi, S.T, M.Sc.​

Biography

Dr. Muammar Sadrawi, S.T., M.Sc. acquired his bachelor’s degree in the Department of Mechanical Engineering, Universitas Syiah Kuala, Indonesia, in 2009. He received his master’s and Ph.D. degrees in Mechanical Engineering at Yuan Ze University, Taiwan, in 2013 and 2018, respectively. Dr. Sadrawi has expertise in artificial intelligence (AI) and data science in sensing and condition monitoring systems.

Research Activity and Highlighted Project

Year Title Partners
2020-2021
Non-Invasive Cardiovascular and Cerebral Hemodynamics
New Era AI Robotic Inc., Taipei, Taiwan
2020
Continuous Blood Pressure Estimation Project
New Era AI Robotic Inc., Taipei, Taiwan
2016-2017
Arrhythmia Detection Development for Wearable System Project
Kinpo Electronics, Inc., Taipei, Taiwan
2015-2018
Emergency Medical Service Big Data Evaluation
National Taiwan University Hospital (NTUH), Taipei, Taiwan
2015
Anesthesia signal processing
National Taiwan University Hospital (NTUH), Taipei, Taiwan

Selected Publication

Sadrawi, M., Lin, Y. T., Lin, C. H., Mathunjwa, B., Hsin, H. T., Fan, S. Z., … & Shieh, J. S. (2021). Non-Invasive Hemodynamics Monitoring System Based on Electrocardiography via Deep Convolutional Autoencoder. Sensors21(18), 6264.

Sadrawi, M., Lin, Y. T., Lin, C. H., Mathunjwa, B., Fan, S. Z., Abbod, M. F., & Shieh, J. S. (2020). Genetic deep convolutional autoencoder applied for generative continuous arterial blood pressure via photoplethysmography. Sensors20(14), 3829.

Sadrawi, M., Sun, W. Z., Ma, M. H. M., Yeh, Y. T., Abbod, M. F., & Shieh, J. S. (2018). Ensemble genetic fuzzy neuro model applied for the emergency medical service via unbalanced data evaluation. Symmetry10(3), 71.

Sadrawi, M., Lin, C. H., Lin, Y. T., Hsieh, Y., Kuo, C. C., Chien, J. C., … & Shieh, J. S. (2017). Arrhythmia evaluation in wearable ECG devices. Sensors17(11), 2445.

Sadrawi, M., Fan, S. Z., Abbod, M. F., Jen, K. K., & Shieh, J. S. (2015). Computational depth of anesthesia via multiple vital signs based on artificial neural networks. BioMed research international2015.

 

    Subscribe Now for News Updates and Information on Upcoming Events


    © 2022 Indonesia International Institute for Life Sciences. All rights reserved.

    ×

    Hello!

    Click one of our contacts below to chat on WhatsApp

    × How can I help you?